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Autonomous Hamiltonian systems 

Hamilton equations of motion: 

Variational equations: 

Let us consider an N degree of freedom 
autonomous Hamiltonian systems of the 

form:  

As an example, we consider the Hénon-Heiles system: 



Symplectic Integrators (SIs) 
Formally the solution of the Hamilton equations of motion can be written 
as: 

where     is the full coordinate vector and LH the Poisson operator: X
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If the Hamiltonian H can be split into two integrable parts as H=A+B, a 
symplectic scheme for integrating the equations of motion from time t to 
time t+τ consists of approximating the operator           by HτL

e

for appropriate values of constants ci, di. This is an integrator of order n. 

So the dynamics over an integration time step τ is described by 
a series of successive acts of Hamiltonians A and B.  
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Symplectic Integrator SABA2C 
The operator        can be approximated by the symplectic integrator 

[Laskar & Robutel, Cel. Mech. Dyn. Astr. (2001)]: 
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The integrator has only small positive steps and its error is of order 2. 

In the case where A is quadratic in the momenta and B depends only on 

the positions the method can be improved by introducing a corrector C, 

having a small negative step: 
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Thus the full integrator scheme becomes: SABAC2 = C (SABA2) C and its 

error is of order 4. 
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Tangent Map (TM) Method 

The Hénon-Heiles system can be split as: 

Any symplectic integration scheme used for solving the Hamilton equations of motion, 

which involves the act of Hamiltonians A and B, can be extended in order to integrate 

simultaneously the variational equations [S. & Gerlach, PRE (2010) – Gerlach & S., 

Discr. Cont. Dyn. Sys. (2011) –   Gerlach et al., IJBC (2012)]. 



Interplay of disorder and nonlinearity 

Waves in nonlinear disordered media – localization or 
delocalization? 

Theoretical and/or numerical studies [Shepelyansky, PRL 

(1993) – Molina, Phys. Rev. B (1998) – Pikovsky & 

Shepelyansky, PRL (2008) – Kopidakis et al., PRL (2008) – 

Flach et al., PRL (2009) – S. et al., PRE (2009) – Mulansky & 

Pikovsky, EPL (2010) – S. & Flach, PRE (2010) – Laptyeva et 

al., EPL (2010) – Mulansky et al., PRE & J.Stat.Phys. (2011) – 

Bodyfelt et al., PRE (2011) – Bodyfelt et al., IJBC (2011)] 

Experiments: propagation of light in disordered 1d waveguide 
lattices [Lahini et al., PRL (2008)] 

Waves in disordered media – Anderson localization [Anderson, 

Phys. Rev. (1958)]. Experiments on BEC [Billy et al., Nature (2008)]  



The Klein – Gordon (KG) model 
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with fixed boundary conditions u0=p0=uN+1=pN+1=0. Typically N=1000. 

Parameters: W and the total energy E. 

The discrete nonlinear Schrödinger (DNLS) equation 
We also consider the system: 
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where   and  chosen  uniformly from   is the nonlinear parameter.l 
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Conserved quantities: The energy and the norm                      of the wave packet. 
2
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Linear case (neglecting the term ul
4/4)  

Ansatz: ul=Al exp(iωt). Normal modes (NMs) Aν,l - Eigenvalue problem:  

           λAl = εlAl - (Al+1 + Al-1) with 
2

l lλ = Wω -W - 2,    ε = W(ε - 1)



Distribution characterization 
We consider normalized energy distributions in normal mode (NM) space  

of the νth NM. 
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Different spreading regimes 



KG: Lyapunov Exponents 

Individual runs 

Linear case 

E=0.4, W=4 

Average over 50 realizations 

 

Single site excitation E=0.4, 

W=4 

Block excitation (21 sites) 

E=0.21, W=4 

Block excitation (37 sites) 

E=0.37, W=3 

 

 

S. et al. PRL (2013) 
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The KG model 
We apply the SABAC2 integrator scheme to the KG Hamiltonian by using 

the splitting: 

with a corrector term which corresponds to the Hamiltonian function: 
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The DNLS model 
A 2nd order SABA Symplectic Integrator with 5 steps, combined with 

approximate solution for the B part (Fourier Transform): SIFT2  
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The DNLS model 
Symplectic Integrators produced by Successive Splits (SS)  
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Using the SABA2 integrator we get a 2nd order integrator with 13 

steps, SS2: 
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Non-symplectic methods for the 

DNLS model 

In our study we also use the DOP853 integrator which is 

an explicit non-symplectic Runge-Kutta integration 

scheme of order 8. 

 
DOP853: Hairer et al. 1993, 

http://www.unige.ch/~hairer/software.html 

 



Three part split symplectic integrators 

for the DNLS model 

Three part split symplectic integrator of order 2, with 5 

steps: ABC2 

A B B A
C

τ τ τ τ
L L L L

τL2 2 2 2 2ABC =  e  e  e  e  e

This low order integrator has already been used by e.g. Chambers, MNRAS 

(1999) – Goździewski et al., MNRAS (2008). 
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2nd order integrators: Numerical results 

ABC2 τ=0.005 

SS2 τ=0.02 

DOP853 δ=10-16 

SIFT2 τ=0.05 

 

 

Er: relative energy 

error 

Sr: relative norm 

error 

Tc: CPU time (sec) 

 

S. et al., Phys. Lett. A 

(2014) 



Composition Methods: 4th order SIs 

In this way, starting with the 2nd order integrators SS2, SIFT2 and ABC2 

we construct the 4th order integrators: 

SS4 with 37 steps              SIFT4 with 13 steps             ABC4
[Y]with 13 steps 

Starting from any 2nd order symplectic integrator S2nd, we can construct a 

4th order integrator S4th using the composition method proposed by 

Yoshida [Phys. Lett. A (1990)]: 
1/3
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2 1
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2- 2 2 - 2

Composition method proposed by Suzuki [Phys. Lett. A (1990)]: 
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Starting with the 2nd order integrators ABC2 we construct the 4th order 

integrator: ABC4
[S] with 21 steps. 



4th order integrators: Numerical results 

SIFT4 τ=0.125 

SIFT2 τ=0.05 

ABC4
[S] τ=0.1 

SS4 τ=0.1 

ABC4
[Y] τ=0.05 

 

 

Er: relative energy 

error 

Sr: relative norm 

error 

Tc: CPU time (sec) 

 

S. et al., Phys. Lett. A 

(2014) 



High order composition methods (I) 

whose coefficients 

 

Using a composition technique introduced by Yoshida [Phys. 

Let. A (1990)] we construct the 6th order symplectic integrator 

ABC6
[Y] having 29 steps : 
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      w = -1.17767998417887

      w = 0.235573213359357

      w = 0.784513610477560

      w = 1- 2(w w w )

cannot be given in analytic form. 

 



High order composition methods (II) 

In addition, following the works of  

Kahan & Li, Math Comput. (1997), and 

Sofroniou & Spaletta, Optim. Methods Softw. (2005)  

we implement some efficient high order composition methods, 

considering as the basic block the 2nd order ABC2 integrator. 

ABC6
[KL] with 37 steps 

ABC6
[SS] with 45 steps 

 

ABC8
[Y] with 61 steps 

ABC8
[KL] with 69 steps 

ABC8
[SS] with 77 steps 

 

ABC10
[SS] with 125 steps 



High order integrators: Numerical results (I) 

SS4
864 τ=0.015625 

ABC6
[Y] τ=0.03 

ABC6
[KL] τ=0.04 

ABC6
[SS] τ=0.125 

 

 

 

Er: relative energy 

error 

Sr: relative norm 

error 

Tc: CPU time (sec) 

 

S. et al., Phys. Lett. A 

(2014) 



High order integrators: Numerical results (II) 

ABC8
[Y] τ=0.0625 

ABC6
[SS] τ=0.125 

ABC10
[SS] τ=0.2 

ABC8
[KL] τ=0.125 

ABC8
[SS] τ=0.2 

 

 

Er: relative energy 

error 

Sr: relative norm 

error 

Tc: CPU time (sec) 

 

S. et al., Phys. Lett. A 

(2014) 



• We presented several efficient integration methods suitable for the 
integration of the DNLS model, which are based on symplectic 
integration techniques. 

• The construction of symplectic schemes based on 3 part split of the 
Hamiltonian was emphasized (ABC methods).  

• Algorithms based on the integration of the B part of Hamiltonian 

via Fourier transforms, i.e. methods SIFT2 and SIFT4 succeeded in 

keeping the relative norm error Sr very low. Drawback: they 

require the number of lattice sites to be 2k, k∗. 

• We hope that our results will initiate future research both for the 
theoretical development of new, improved 3 part split integrators, as 
well as for their applications to different dynamical systems. 

Summary 
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